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We study theoretically the adsorption of surfactant onto the interface of gas bubbles
in creeping flow rising steadily in an infinite liquid phase containing surface-active
agents. When a bubble rises in the fluid, surfactant adsorbs onto the surface at the
leading edge, is convected by the surface flow to the trailing edge and accumulates and
desorbs off the back end. This transport creates a surfactant concentration gradient
on the surface that causes the surface tension at the back end to be lower than that at
the front end, thus retarding the bubble velocity by the creation of a Marangoni force.
In this paper, we demonstrate numerically that the mobility of the surfactant-retarded
bubble interface can be increased by raising the bulk concentration of surfactant. At
high bulk concentrations, the interface saturates with surfactant, and this saturation
acts against the convective partitioning to decrease the surface surfactant gradient.
We show that as the Péclet number (which scales the convective effect) increases,
larger concentrations are necessary to remobilize the surface completely. These results
lead to a technologically useful paradigm where the drag and interfacial mobility of
a bubble can be controlled by the level of the bulk concentration of surfactant.

1. Introduction
When a droplet or gas bubble moves through a continuous liquid phase by the

action of a driving force, surfactants dissolved in either the continuous or droplet
phase adsorb onto the fluid particle interface. Frumkin & Levich (1947) (see also
Levich 1962 and Edwards, Brenner & Wasan 1991) first constructed a framework by
which this adsorption can retard the particle velocity. We describe this mechanism
for the case in which surfactant is only in the continuous phase, with a far-field
concentration C∞. Surfactant adsorbed on the fluid particle surface is convected by
the surface flow from the front to the particle’s trailing end. The surface concentration
increases causing kinetic desorption into the rear sublayer. (The sublayer is defined
as the region of the bulk fluid immediately adjacent to the surface.) This desorption
locally raises the sublayer concentration Cs, at the back above the bulk value C∞,
far from the interface. The difference drives a diffusive flux away from the trailing
end. Similarly at the front end, the reduction in surface concentration causes kinetic
adsorption from the front sublayer onto the front of the bubble. The front sublayer
concentration decreases, creating a diffusive flux from the bulk to the front end.
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Eventually a steady state develops in which all these fluxes balance. The surface
concentration at the trailing end is higher than that at the front, and the interfacial
tension γ is lower at the back relative to the front. This interfacial tension difference
creates a Marangoni stress along the surface which forces the front part of the surface
to tug at the rear, reducing the interfacial mobility and at steady state increasing the
drag for a given terminal velocity U.

There has been a long-standing theoretical interest in the Marangoni retardation
of the interfacial and terminal velocities of buoyantly driven fluid particles due to
adsorbed surfactant on the particle surface. This interest is motivated primarily by its
relevance to the understanding of the performance of dropwise extraction and aeration
processes (see, for example, Huang & Kintner 1989 and Beitel & Heideger 1971),
where the reduction in interfacial mobility due to the presence of trace amounts
of surfactant, or intentionally added surface-active species, reduces the interphase
transfer. Recent microgravity applications have provided additional incentive for
the study of this problem. In the absence of buoyancy, thermocapillary forces have
been used to move fluid particles. The application of a temperature gradient to the
continuous phase in which a fluid particle is situated creates a tension difference
on the particle surface (since the tension decreases with increase in temperature)
which drives the particle to the warmer end of the gradient. The retardation due to
surfactant adsorption can reduce to near zero this thermocapillary velocity (Kim &
Subramanian 1989b; Nadim & Borhan 1989 and Chen & Stebe 1997).

Using the Levich framework, several efforts have calculated, at steady state, the
increase in drag for a particle moving at constant velocity due to the Marangoni
forces created by the convective redistribution of surfactant along the surface. These
investigations have examined two surfactant transport regimes. In the first, the rate
of convection of surfactant along the surface is much faster than either the rates
of bulk diffusion or kinetic exchange, so the surfactant behaves as if it were insol-
uble (to leading order in an asymptotic sense). In the second regime, kinetic and
diffusive exchange are of the same order as surface convection, so transport in the
continuous phase affects the surfactant gradient and Marangoni stress. We review the
investigations in these two regimes below.

In the insoluble limit, kinetic and bulk exchange cannot match the convective rate.
To scale the kinetic rate we use Langmuir kinetics,

βCs(Γ∞ − Γ )− αΓ = j, (1.1)

where α and β are the desorption and adsorption rate constants respectively, j is
the kinetic flux, Γ is the surface concentration and Γ∞ is the maximum packing
concentration. For large bulk concentrations, the convective rate is of order Γ∞Ua,
where U is the terminal velocity and a the particle radius. As the diffusive rate is
of order DC∞/a, where D is the bulk diffusion coefficient, the ratio of diffusive to
convective rate can be written as χ0k/Pe, where k = βC∞/α, χ0 = αa/βΓ∞ and Pe is
the Péclet number defined as Pe = Ua/D. The ratio of kinetic desorption to surface
convection is the Biot number, Bi = αa/U. In the insoluble limit we have χok/Pe� 1
or Bi � 1. In both the buoyancy- and thermocapillary-driven applications, Péclet
numbers tend to be large, and therefore diffusive limitations give rise to the insoluble
limit when the bulk concentration of the surface-active species is small enough.

In the insoluble limit, when the surface Péclet number (Pes = Ua/Ds) is infinite,
surfactant convected to the trailing end cannot diffuse back to the front. The surfactant
forms a stagnant cap of angle φ at the back with zero interfacial velocity, while the
front end is free of surfactant and therefore stress free. The drag increases with
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increasing φ. Several efforts have computed the dependence of the drag on φ for the
case in which the inertia of the continuous liquid and particle phase (if the particle
is a liquid) are negligible and the fluid particle is a sphere (viscous and inertial
forces small compared to capillary forces). For buoyancy-driven motion, see Savic
(1953), Griffith (1962), Harper (1973) (for small cap angles), and Davis & Acrivos
(1966) for bubbles and Holbrook & Levan (1983a), Sadhal & Johnson (1982) and
He, Maldarelli & Dagan (1991) for droplets, and for thermocapillary-driven motion
of drops Kim & Subramanian (1989b). The size of the cap as a function of the
bulk concentration of surfactant is obtained by an overall surfactant mass balance
which requires that the net flux of surfactant to the surface equal zero at steady
state (cf. Harper 1973 for the diffusion limited case and Sadhal & Johnson (1982)
and He et al. (1991) for the kinetically determined case). The cap size and hence
the drag increases as the bulk concentration increases. For bubble motion for which
the fluid-phase inertia is not negligible (order-one Reynolds number, Re = ρUa/µ,
where ρ and µ are the continuous-phase density and viscosity, respectively), Bel Fdhila
& Duineveld (1996) (for a spherical bubble shape) and McLaughlin (1996) (for a
deformed shape) computed the drag for buoyancy-driven motion as a function of the
cap angle, and the cap angle as a function of concentration for kinetic control. They
demonstrated that at sufficiently large Re and cap angles, the immobility of the cap
causes a recirculation at the back. Finally, in the insoluble limit, if the surface Péclet
number is of order one, surfactant convected to the back can diffuse to the front
end, spreading surfactant everywhere on the surface and reducing, at the same bulk
concentration of surfactant, the Marangoni retardation relative to the infinite surface
Péclet value, cf. for buoyancy-driven motion Holbrook & Levan (1983b) and Harper
(1973) (for negligible inertia and a spherical geometry), and Leppinen, Renksizbulut
& Haywood (1996b) (for order-one Re and fluid droplet deformation in air), and Kim
& Subramanian (1989b) for thermocapillary-driven spherical bubbles with negligible
inertia.

The insoluble-limit asymptotics described above has been confirmed numerically in
the recent study of Cuenot, Magnaudet & Spennato (1996) of the buoyancy-driven
motion of a spherical bubble at order-one Reynolds number. This investigation
formulated and solved the convective diffusion equation at large surface and bulk
Péclet numbers (5 × 104) and low bulk concentrations (k = 0.112 and 0.0112). In
addition χ0 was equal to 5 or 50, and hence χ0k/Pe � 1. (Note that the kinetic
exchange was also slow.) The simulation results illustrate a cap by the collection of
surfactant at the back end (due to the high surface Péclet number), and confirm
the formation of a wake at order-one Reynolds number as noted by Bel Fdhila &
Duineveld (1996) and McLaughlin (1996).

In the second regime, surfactant transport from the bulk to the surface matches the
convective transport. If the kinetic rate is fast relative to convection, the surface and
sublayer are in equilibrium. Bulk diffusion then governs the surfactant transport (the
convection/bulk diffusion regime), with the parameter χ0k/Pe of order one or larger
in this regime, determining the bulk concentration distribution. All studies of the
convection/bulk diffusion regime considered the case of a slightly soluble surfactant
or a surfactant at low bulk concentration (k � 1). Several studies examined the case
of large Péclet number, and used a boundary layer analysis to describe the diffusive
flux, cf. Deryagin, Dukhin & Lisichenko (1959), Saville (1973), Levich (1962) and
Harper (1974, 1982) for negligible inertia and a spherical particle, and Andrews, Fike
& Wong (1988) for a deformed particle at order-one Reynolds number; all these
studies are for buoyancy-driven motion. The first studies in the direction of solving
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the convective diffusion directly were Levan & Newman (1976) and Holbrook &
Levan (1983b) for the case of buoyancy-driven motion of a spherical particle in the
absence of inertia. Levan demonstrated that as the bulk concentration increases, the
drag increases. This increase in drag follows from the fact that the concentration
difference between the bulk and the sublayer increases with bulk concentration for
k � 1, and this results in an increase in the surface concentration difference since the
sublayer and surface are in equilibrium. Thus the gradient on the surface increases,
and this accounts for the increase in drag.

The above studies at low bulk concentrations in the convection/bulk diffusion
regime (the parameter χ0k/Pe of order one or larger and fast kinetics) leave open the
question of the effect of increasing bulk concentration in this regime. From the above
scaling arguments, we expect that at high bulk concentrations the concentration
difference will become independent of the bulk concentration. This results from
the fact that the equilibrium surface concentration saturates to Γ∞ for k � 1,
and the concentration difference required by diffusion to balance the convection
of a saturated surface becomes constant. In addition because of this saturation at
high bulk concentration, the bulk concentration difference creates a smaller surface
concentration difference reflecting the fact that the isotherm becomes flat at high bulk
concentration near saturation. Thus we might expect the Marangoni retardation to
decrease at increasing bulk concentrations in the convection/bulk diffusion regime,
a surprising result not anticipated from the low-concentration studies of Holbrook
& Levan (1983b) in this regime, or the stagnant cap regime, both of which predict
an increase in drag with k. The gradual removal of the Marangoni force at high
concentration leads to a potentially useful paradigm in technological applications
with high bulk and surface Péclet numbers: For low bulk concentrations in the high
Péclet number regime, stagnant caps form, and the drag increases with concentration
as the cap angle increases. However, for larger concentrations for which χ0k/Pe
becomes of order one or larger, we enter the convection/bulk diffusion regime and
the drag begins to decrease with concentration. At increasingly higher concentrations
for which χ0 k/Pe� 1, the interface mobility increases and returns to an unretarded
state as the surface concentration gradients and Marangoni force disappear. Increasing
the concentration then provides a measure of mobility control, bringing the interface
from the stagnant cap regime to a completely remobilized regime.

The aim of this paper is to illustrate this mobility control through the numerical
solution of a model problem. We consider a spherical gas bubble which rises steadily
and axisymmetrically with velocity U by buoyancy in an infinite, incompressible,
continuous, Newtonian fluid with a dissolved surfactant with uniform concentration
far from the sphere. Surfactant adsorption will be described by the Langmuir for-
mulation. Since the mechanism of relaxation of the Marangoni stress is independent
of the continuous-phase inertia, we will examine the simpler case of creeping flow.
In the convective/diffusion regime discussed above, kinetic exchange is fast relative
to the rate of convection. If kinetic exchange is of the order of convection, then the
surface concentration gradients will be larger, and the Marangoni stress greater than
for infinite exchange. Thus in the limit of high concentration the Marangoni gradient
will not relax completely, but a remaining gradient will be supported by the kinetic
limitation. Studies in which no bulk concentration gradients are considered and only
a kinetic limitation is retained do indicate that as the kinetic exchange increases
the retardation decreases and eventually disappears, cf. Chen & Stebe (1996, 1997)
for buoyancy- and thermocapillary-driven motions of spherical droplets. In order to
establish the relaxation at high bulk concentration, in this study we will focus on the
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rapid kinetic limit for which the relaxation is most pronounced. Kinetic effects can
easily be incorporated, but will not alter the relaxation mechanism. For this same
reason, surface diffusion will be neglected relative to surface convection. This paper
is organized as follows. In § 2, the transport equations are detailed, and the numerical
algorithm for their solution is outlined. In § 3, simulations of the drag, interfacial
velocity and bulk and surface concentrations are presented as a function of the bulk
concentration to illustrate the remobilization regime. Finally in the last section, we
conclude with a discussion comparing the results obtained to experiments undertaken
in the literature.

2. Mathematical model and numerical method
2.1. Mathematical model

The field equations for the flow and surfactant transport for a bubble rising steadily
and axisymmetrically in creeping flow through a incompressible, Newtonian continu-
ous phase containing surfactant is described by the Stokes and convection–diffusion
equations. By the nature of the problem, it is most convenient to formulate these
equations in spherical coordinates (r, θ, φ), fixed to the bubble (and centred at the
bubble origin), with θ = 0 representing the upstream direction. We examine the sys-
tem of equations in non-dimensional form, where we non-dimensionalize the velocity
by the free-stream (or bubble) velocity U, the length by the bubble radius a, and the
concentration by the bulk concentration at infinity C∞. Since the flow is axisymmetric
and the fluid is incompressible, the solution is independent of the azimuthal angle φ,
the velocity field can be written in terms of the stream function ψ:

ur = − 1

r2 sin θ

∂ψ

∂θ
, uθ =

1

r sin θ

∂ψ

∂r
, (2.1)

and the vorticity has only one component w in the azimuthal direction. The Stokes
equations are most conveniently expressed in terms of the stream function and
vorticity in the form

∂w

∂t
= E2(rw sin θ), (2.2)

rw = E2ψ, (2.3)

where

E2 =
1

sin θ

∂2

∂r2
+

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2.4)

The surfactant transport in the bulk is expressed by the convection–diffusion
equation

∂C

∂t
+ u · ∇C =

1

Pe
∇2C, (2.5)

where, as before, Pe = Ua/D is the Péclet number, with D being the diffusion
coefficient.

The boundary conditions at the axes of symmetry are

ψ = 0, w = 0,
∂C

∂θ
= 0 at θ = 0, π, (2.6)
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and the zero normal velocity at the interface leads to

ψ = 0 at r = 1. (2.7)

Surfactant molecules adsorbing onto the bubble surface are transported by convec-
tion and diffusion along the interface. The surfactant interfacial conservation without
surface deformation is described by the equation (neglecting surface diffusion)

∂Γ

∂t
+

1

sin θ

∂

∂θ
(uθΓ sin θ) =

χ0k

Pe

∂C

∂r

∣∣∣∣
r=1

, (2.8)

where Γ is the surface concentration non-dimensionalized by the maximum packing
density of surfactant Γ∞ (as introduced in § 1) χ0 = aα/βΓ∞, and k = βC∞/α is
the measure of the bulk concentration (α and β are the (Langmuir) desorption and
adsorption rate constants respectively).

The presence of the surfactants creates a surface tension gradient and causes a
force on the bubble surface that must be compensated by a viscous tangential stress
on the interface. This is expressed as

1

a

∂γ

∂θ
= − τrθ|r=1 , (2.9)

where τrθ is the shear stress, and γ is the surface tension. Combining this with the
equation of state derived from Langmuir adsorption (see Levich 1962)

γ = γc + RTΓ∞ ln(1− Γ ) (2.10)

we have

τrθ|r=1 =
Ma

1− Γ
∂Γ

∂θ
, (2.11)

where Ma = RTΓ∞/µU is the Marangoni number, µ is the viscosity, R is the gas
constant and T is the temperature.

The stress balance leads to a boundary condition for the vorticity at the surface

w =
2

sin θ

∂ψ

∂r
+

Ma

1− Γ
∂Γ

∂θ
. (2.12)

In this paper we assume that kinetics is fast relative to convection. In non-
dimensional form the Langmuir kinetic scheme becomes

χ0k

Pe

∂C

∂r
= Bi (kCs(1− Γ )− Γ ) at r = 1. (2.13)

For fast adsorption and desorption (diffusion-controlled transport), Bi � 1 and
therefore in order for the diffusive rate to be finite we must have

Γ =
kCs

1 + kCs
, (2.14)

where Cs is the bulk concentration at the surface. Equation (2.14) therefore defines
thermodynamic equilibrium between the sublayer and the surface.

At infinity, the boundary conditions match to the free-stream and uniform concen-
tration:

ψ = 1
2
r2 sin2 θ, w = 0, c = 1. (2.15)

In general, the nonlinear system (2.2), (2.3) and (2.5) coupled with the boundary
conditions (2.6), (2.7), (2.8), (2.14) and (2.15) cannot be solved analytically. We will
solve for the steady state by using the following numerical method.
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2.2. Numerical algorithm

We use a finite-difference method along with ADI time discretizations (Alternating
Directions Implicit method) for the pseudo-unsteady system which is widely used in
fluid dynamics (see Peyret & Taylor 1983). The ADI scheme splits each time step into
two steps. As a result, only tridiagonal systems of linear algebraic equations need
to be solved, and the method is second-order accurate. Alternatively the nonlinear
steady-state problem can be addressed directly and the resulting algebraic equations
solved by iteration (for example SOR or conjugate gradient methods – see Peyret &
Taylor 1983).

With the finite-difference method, one has to limit the radial direction at some
finite radius r∞. Applying the uniform-stream boundary condition directly at infinity
on r = r∞ would introduce an error, and the proper way to minimize this error is to
obtain a correction term for the stream function as r → ∞ (see Happel & Brenner
1962), and use the corrected stream function as the boundary condition at the finite
radius r∞. The result is

ψ = 1
2
r2 sin2 θ + 1

8
FDr sin2 θ as r →∞ (2.16)

for creeping flow, where FD is the total drag on the particle non-dimensionalized
by πµUa. We found that the drag on the particle is about 6% higher if we apply
the uniform-stream condition directly on r = r∞ than that with the correction term.
Secondly, discretizing the equations directly on the physical domain would give an
expanding mesh as r increases. To avoid this problem we transform the physical
domain (r, θ) onto a unit square (x, y) using r = rx∞ and θ = πy.

To check if the code works correctly, we used it to solve limiting problems for
which analytical solutions exist, and compared the analytical solutions with the
predicted numerical results. We found two analytically solvable problems. These
solutions describe unsteady adsorption of surfactant from a spatially uniform state to
an initially clean bubble surface, with no flow where the surface is either an infinite
sink for surfactant (Cs = 0) or the adsorption is linear Γ = kCs. The solutions for the
concentration fields are, respectively,

C = 1− 1

r
+

1

r
erf

(
r − 1

2
√
tPe

)
(2.17)

and

C = 1− k

πr

∫ ∞
0

χ
√
y cos

√
y(r − 1) + (χ− ky) sin

√
y(r − 1)

(χ− ky)2 + χ2y
e−ytPe dy, (2.18)

where χ = χ0k. Agreement between numerical solutions and the solutions above is
excellent.

As an additional accuracy test for the numerics, we developed an asymptotic
solution for the steady drag FD (non-dimensionalized by πµUa) for the full problem
for k � 1 (small bulk concentration) and Pe = O(k), see the Appendix. In this case
the drag is given by

FD = −4− 2QMa

3χ0

k2 +
4QMa

3χ0

k3 + · · · , (2.19)

where Pe = Qk, with Q a constant measuring the size of Pe. We found that the
difference between asymptotic and numerical solutions was less than 0.5%.

Finally, we also computed the non-dimensional steady surfactant mass transfer
(the Nusselt number) for a spherical bubble rising in creeping flow (as given by
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Figure 1. The surface concentration distribution, for Ma = 5, χ0 = 1 and Pe = 10. θ = 0 is the
leading edge and k = βC∞/α is the bulk concentration.

the Hadamard–Rybczynski velocity field) for Cs = 0 with order-one Péclet number
(Pe = 3, 10, 40, 70), and found excellent agreement with Masliyah & Epstein’s (1971)
numerical result for the Nusselt number.

3. Results
The results were computed on a 50× 50 grid and the time steps were 2× 10−2 for

most of the calculations. However, for k = 100, since bulk diffusion is much faster
(relative to convection) than for smaller k and the surface concentration becomes
almost uniform, equation (2.8) becomes stiff and the time step has to be reduced
accordingly (see Peyret & Taylor 1983 for details). The criterion of convergence for
the results is max |ψn+100−ψn| < 10−6, with n being the nth time step. We also checked
a few results on a 100× 100 grid, and found that the drag FD on a 100× 100 grid is
0.3% higher.

To illustrate remobilization, we calculate the results by varying the concentration k
and Péclet number Pe about a reference case having Ma = 5 and χ0 = 1. We plot the
drag, surface concentration distribution and surface velocity profile, and the contour
of bulk concentration to show that the bubble motion can be controlled by bulk
concentration. All graphs presented in this Section depict dimensionless variables.

3.1. Surface concentration distribution

The surfactant adsorbs onto the particle surface at the leading edge, convects to the
trailing edge by surface flow, and then diffuses into the bulk as the particle migrates
in the fluid. The adsorption of the surfactant onto the liquid interface develops a
gradient of surfactant on the surface. In figure 1, we plot the surface concentration
distribution as a function of θ for Pe = 10 and various bulk concentrations k. The
figure shows that for any k (bulk concentration), the surface concentration at the
trailing edge (θ = π) is higher than that at the leading edge (θ = 0), and that
as k increases the amount of surfactant adsorbed on the surface increases. As we
discussed in the Introduction, for large Péclet number and small bulk concentration
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the convection on the surface is much larger than the diffusion to the bulk, which is
evident also from equation (2.8), and surfactants accumulate at the back end to form
a stagnant cap. This phenomenon is shown in the surface concentration distribution
above for k = 0.01 , where the front end is free of surfactant, while a sharp surface
concentration gradient develops in a small region near the rear stagnant point. The
cap size increases as concentration k increases, and eventually the cap covers the
entire surface.

When the bulk concentration increases to about k = 1, the parameter χ0k/Pe
increases and a surface concentration gradient develops on the entire sphere as surface
convection and bulk diffusion become of the same order. As we increase the bulk
concentration further to k = 100, the distribution of surfactant on the surface is almost
uniform (the bubble surface has been remobilized) as the parameter χ0k/Pe becomes
larger. This argument readily follows from the surface concentration conservation
equation (2.8) and equation of equilibrium between the surface concentration and the
sublayer (2.14). It follows from (2.14) that the amount of surfactant adsorbed onto
the surface increases as the bulk concentration increases. From (2.8), as k increases
the ratio of bulk diffusion to convection χ0k/Pe increases for fixed Péclet number.

3.2. Bulk concentration distribution

In figure 2, we plot the contours of concentration for Pe = 10, Ma = 5, and χ0 = 1
with varying k (0.1, 1, 10, 100). For k = 0.1, the concentration near the leading edge is
much smaller than that near the trailing edge, and the sublayer concentration at the
front end is almost uniform, as is the distribution for a near stagnant cap regime. As
k increases to 1, and the parameter χ0k/Pe increases and becomes of order one, bulk
diffusion balances surface convection and the sublayer concentration varies along the
whole surface. As this parameter becomes much larger than one, the characteristic
concentration difference relative to the bulk concentration tends to zero, and this is
evident in the figure where for k = 10 and 100 the non-dimensional concentration is
becoming uniform in the bulk.

3.3. Surface velocity

As a concentration gradient develops on the surface, a surface tension gradient
develops that creates a Marangoni force in the opposite direction to the surface flow
and reduces the surface velocity. But as shown in figure 1, the surface concentration
becomes uniform as k increases for a fixed Péclet number. The reduction in the
surface concentration gradient causes an increase in the surface mobility as is evident
in figure 3 which plots the surface velocity as a function of θ and k with the same
values of Ma, Pe and χ0 as in figure 1. Note that for a clean interface, the surface
velocity is equal to sin θ/2, so at any point on the surface the velocity cannot be
larger than sin θ/2 for any k. That is exactly what is shown in figure 3. When the
bulk concentration is small (k = 0.01 and 0.1), the surface velocity is the same as
that for the clean surface near the leading edge (θ = 0), but it is smaller near the
rear stagnant point (θ = π) which corresponds to the surface concentration gradient
in figure 1. As k increases from 0 to 1, the surface velocity decreases from the clean
value sin θ/2. This is the retardation in interfacial flow that is usually associated with
surfactant adsorption. However as k increases further, the velocity increases, and at
k = 100 the velocity profile tends to that for clean surface. This elevated concentration
velocity profile is almost symmetric about θ = π/2, since the bubble interface has
been remobilized.
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U

Figure 2. Contours of concentration, for Ma = 5, χ0 = 1 and Pe = 10. U is the terminal velocity
and k = βC∞/α is the bulk concentration.

3.4. Drag on the bubble

The effect of bulk concentration on the terminal velocity is given in Figure 4 by
examining the way the bubble drag non-dimensionalized by πµaU is affected by the
bulk concentration of surfactant. Three different Péclet numbers are used (Pe = 0.1,
1.0, and 10.0). In this non-dimensional unit, the drag on a clean bubble is 4 and the
drag on a completely immobile surface (solid surface) is equal to 6. We found that,
for a fixed Péclet number, as we vary the bulk concentration k from 0.01 to 100, the
drag first increases monotonically as a function of concentration (corresponding to
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Figure 3. Velocity on the bubble surface, where sin θ/2 is the surface velocity for the clean surface,
for Ma = 5, Pe = 10, and χ0 = 1. θ = 0 is the leading edge and k = βC∞/α is the bulk concentration.
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Figure 4. The effect of concentration on the drag, for Ma = 5 and χ0 = 1 and the dots are the
actual points calculated. θ = 0 is the leading edge and k = βC∞/α is the bulk concentration.

the decrease in the interfacial mobility observed in figure 3) when the concentration
is small (= 0.01–1), but decreases to the clean-surface value when the concentration
gets large as the interface remobilizes. With concentration fixed, as we vary the Péclet
number from 0.1 to 10, the drag increases as the Péclet number increases. The larger
the Péclet number is, the larger the concentration needs to be to bring the drag down
to the clean-surface value, as shown in figure 4, where the calculations are for Ma = 5
and χ0 = 1.
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3.5. Scaling argument explanation for remobilization

We have argued that the increase in surface velocity and reduction in drag are
due to the fact that the surface concentration becomes nearly uniform (and non-
dimensionally equal to one) as the bulk concentration becomes large. The Marangoni
force as given in equation (2.11) is Ma/(1− Γ )(∂Γ/∂θ). Therefore even though the
surface concentration is becoming uniform (Γ → 1), because of the singular part
of the Marangoni force for Γ near 1, small concentration gradients can still give
rise to order one or larger Marangoni forces. The remobilization obtained in the
above numerical results for the surface velocity and drag reflect the fact that the
concentration gradient on the surface tends to zero faster, as k becomes large, than
the Marangoni stress diverges. We can use scaling arguments to verify the numerical
results. The scale for the retarding Marangoni force is given by

τm =
interfacial tension gradient

viscous stress
= O

(
1

µU

[
∂γ

∂Γ

]
Γ0

∆Γ

)
, (3.1)

where τm is the non-dimensional retarding Marangoni force and Γ0 = Γ∞k/(1 + k)
is the equilibrium surface concentration. The derivative of the equation of state for
Langmuir adsorption is [

∂γ

∂Γ

]
Γ0

= − RT

1− Γ0/Γ∞
. (3.2)

As we developed in the Introduction, the bulk characteristic concentration gradient is
obtained by balancing the convection (Γ0Ua) and diffusion ((D∆C/a)a2), and is given
by

∆C

C∞
= O

(
Pe

χ0(1 + k)

)
(3.3)

and therefore from adsorption equilibrium

∆Γ = O

(
kΓ∞Pe
χ0(1 + k)3

)
(3.4)

and the non-dimensional Marangoni force is

O

(
Ma

kPe

χ0(1 + k)2

)
. (3.5)

In the case in which k � 1, the concentration difference is of order k, the difference
in surface concentrations is also of order k because of the linearity of the isotherm
at small k and therefore the non-dimensional Marangoni force scales with k. This
explains the increasing of the drag as k increases from zero, as is shown by our results
and those of Holbrook & Levan (1983b).

In the limit of large k, the retardation scales as MaPe/χ0k and tends to zero;
although, from the equation of state,

[
∂γ/∂Γ

]
Γ0

scales as k at saturation, since the

surface concentration difference scales as k−2 the retarding force decreases as k−1,
overcoming the fact that the surface becomes more incompressible.

4. Conclusions and comparison with experiments
We have shown that the bubble interface can be remobilized by controlling the bulk

concentration. The ratio of bulk diffusion to convection kχ0/Pe plays a very important
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role in this problem. When kχ0/Pe = O(1), a surface concentration gradient develops
over the entire surface, the Marangoni force is large, and the bubble terminal velocity
is significantly reduced. As kχ0/Pe � 1, although the total amount of surfactant
adsorbed onto the surface increases, the surface concentration becomes uniform (we
say the bubble interface remobilizes). Since the diffusion to the bulk is much larger
than the convection on the surface (as is evident from equation (2.8)), surfactant will
not accumulate at the back end as we showed in figure 1. Hence the stress Marangoni
force disappears, the bubble regains the velocity of that for the clean surface. The
larger the Péclet number, the larger the bulk concentration needed to remobilize the
bubble interface as shown in figure 4.

There is a long history associated with the measurement of the effect of surfactants
on the motion of bubbles and drops. The early efforts Garner & Skelland (1955),
Elzinga & Banchero (1961), and Horton Fritsch & Kintner (1965) all studied drops.
They observed the reduction of interfacial mobility and diminishment and shift (to the
leading pole) of the circulation vortex in the drop with surfactant present in the system.
Systematic and more quantitative studies of the effect of the bulk concentration of
surfactant on the terminal velocity began with the measurements of Edge & Grant
(1972) of the velocity of dichloroethane drops in water with sodium lauryl sulphate
as the surfactant, and later the measurements of Yamamoto & Ishii (1987) of the
rise velocity of air bubbles in water again with sodium lauryl sulphate, and of Bel
Fdhila & Duineveld (1996) of air bubble velocities in water with Triton X-100, Brij
30 and sodium dodecyl sulphate as the surfactants. All these studies investigated
bubbles or drops of the order of 0.1–1 cm. Because of the low viscosity of water, the
bubbles or drops were deformed and terminal velocities were of the order of 10 cm
s−1. Measurements were made of the terminal velocity as a function of increasing
bulk concentration, at concentrations below the point at which micellar aggregates
form in the bulk. All studies showed a decrease in velocity, with the expanded studies
Edge & Grant (1972) and Bel Fdhila & Duineveld (1996) demonstrating that at high
enough concentrations the velocity becomes constant with increasing concentration.
The fact that the remobilization was not observed in these experiments is because the
parameter kχ0/Pe was probably much less than one, and the saturation in velocity
may be due to a completely immobile interface. For the velocities and bubble and drop
diameters used, Péclet numbers are of order 106–107, assuming 10−6 cm s−2 for the
surfactant diffusion coefficient (The review article by Chang & Franses (1995) provides
characteristic values for diffusion coefficients.) Also from tabulated literature values
given in Chang & Franses (1995), we can estimate for the surfactants used χ0 to be
of order 1–102 and k between 1–103 . Thus irrespective of any kinetic constraints, the
high Péclet numbers require the surfactant transport to be in the stagnant cap regime.

The above recent measurements point to the fact that the regime in which remo-
bilization at increasing bulk concentration can be observed must be at low velocities
and small fluid particles where Péclet numbers are necessarily smaller. The mecha-
nism of remobilization outlined here is not limited to isolated drops or bubbles, but
is valid for any fluid particles moving through a continuous phase. In this regard,
the experiments of Stebe, Lin & Maldarelli (1991) provide strong evidence for the
remobilization theoretically studied in this study. These authors studied a three-phase
periodic slug flow in a capillary tube in which a train of alternating air and aqueous
segments (containing the surfactant Triton X-100 or Brij 35) ride on an annular wet-
ting film of flourocarbon oil. The surfactant adsorbs onto the oil/aqueous interface,
where it is convected to the trailing edge of the slug. Slug velocities were of the order
of 1 cm s−1, and the viscosity of the oil was 5 g cm−1 s−1. At low concentrations of
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the surfactant the pressure required to drive the slug train at a constant velocity was
found to increase with the bulk concentration. However at high concentrations the
pressure relaxed, indicating remobilization. In this case, the slower velocity of the
slugs, and the higher viscosity of the oil allowed diffusion to outscale convection and
remobilize the surface. In this study complete remobilization was only achieved in the
limit of high concentrations where micelle aggregates formed in the bulk. Breakdown
and reforming of these aggregates provides a second mechanism for maintaining a
uniform surface concentration. The onset of micellization is the point at which k can
no longer increase (after micelles form, the bulk concentration is sensibly constant).
Thus micellization would provide the only route for remobilization when, because of
elevated Péclet numbers, the parameter kχ0/Pe cannot be made large by increase in
bulk concentration.

This work was supported by a grant from NASA’s Microgravity Fluid Physics,
NAG 3 1618 to C.M. and D.T.P. and a National Science Foundation Grant DMS-
970493 to D.T.P.

Appendix. Analytical solution for small bulk concentration and
Péclet number

The objective of this Appendix is the asymptotic evaluation of the drag FD expe-
rienced by the bubble in the limit of small bulk concentration k and small Péclet
number of O(k). It turns out that the O(k) correction is zero and the asymptotic de-
velopment is taken to O(k3) in order to provide an accurate enough result to compare
with the simulations.

The exact system to be solved is

E4ψ = 0,

ψ|r=1 = 0, ψ|θ=0,π = 0, ψ = 1
2
r2 sin2 θ

∣∣
r→∞ ,

ψrr − 2ψr|r=1 =
Ma

1− Γ
∂Γ

∂θ
sin θ,

 (A 1)

for the hydrodynamics and

u · ∇C = 1/Pe∇2C,

1

sin θ

∂

∂θ
(sin θuθΓ ) =

χk

Pe

∂C

∂r

∣∣∣∣
r=1

,

Γ =
kCs

1 + kCs
at r = 1,

C = 1 as r →∞,


(A 2)

for the convection–diffusion equation governing the concentration distribution in the
bulk. It can be seen from equation (A 2) that in the limit k � 1 (here we also take
Pe = Qk with Q a constant) the hydrodynamics decouples from the concentration
dynamics, to leading order. In addition, at higher order this remains the case and
forced versions of equation (A 1) need to be addressed.

Formally, then, we expand dependent variables in powers of k,

ψ = ψ0 + kψ1 + k2ψ2 + k3ψ3 + · · · , (A 3)

Γ = Γ0 + kΓ1 + k2Γ2 + k3Γ3 + · · · , (A 4)
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C = C0 + kC1 + k2C2 + k3C3 + · · · , (A 5)

u = u0 + ku1 + k2u2 + k3u3 + · · · , (A 6)

and substitute into (A 1) and (A 2), to obtain a sequence of problems at successive
orders. The leading-order problem is

E4ψ0 = 0,

ψ0|r=1 = 0, ψ0|θ=0,π = 0, ψ0|r→∞ = 1
2
r2 sin θ,

∂2ψ0

∂r2
− ∂ψ0

∂r

∣∣∣∣
r=1

=
Ma sin θ

1− Γ0

∂Γ0

∂θ
,

 (A 7)

and

∇2C0 = 0,

1

sin θ

∂

∂θ
(sin θu0θΓ0) =

χ

Q

∂C0

∂r

∣∣∣∣
r=1

,

Γ0 = 0,

C0|r→∞ = 1.


(A 8)

From (A 8) we have Γ0 = 0, and the boundary conditions involving Γ0 for (A 7)
and (A 8) become, respectively,

∂2ψ0

∂r2
− ∂ψ0

∂r

∣∣∣∣
r=1

= 0,
∂C0

∂r

∣∣∣∣
r=1

= 0. (A 9)

The hydrodynamics decouples, leading to the well-known Hadamard–Rybczynski
solution (see for example Happel & Brenner 1962)

ψ0 = 1
2
(r2 − r) sin2 θ. (A 10)

The general solution of (A 8) is C0 =
∑∞

n=0 anr
−nPn(cos θ) and application of the

boundary condition at infinity gives a0 = 1, while the boundary condition at the
bubble surface implies ai = 0 for i = 1, 2, · · ·. Thus, the leading-order solution for the
concentration is

C0 = 1. (A 11)

At the next order, O(k), the problem is

E4ψ1 = 0,

ψ1|r=1 = 0, ψ1|θ=0,π = 0, ψ1|r→∞ = 0,

∂2ψ1

∂r2
− ∂ψ1

∂r

∣∣∣∣
r=1

= Ma sin θ
∂Γ1

∂θ
,

 (A 12)

and

∇2C0 = 0,

1

sin θ

∂

∂θ
(sin θu0θΓ1) =

χ

Q

∂C1

∂r

∣∣∣∣
r=1

,

Γ1 = 1,

C1|r→∞ = 0,


(A 13)
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where u0θ|r=1 = (1/sin θ)(∂ψ0/∂r) = 1
2

sin θ follows from the leading-order solutions.
Since Γ1 = 1 the boundary conditions involving Γ1 in (A 12) and (A 13) become

∂2ψ

∂r2
− 2

∂ψ

∂r

∣∣∣∣
r=1

= 0 and
∂C1

∂r

∣∣∣∣
r=1

=
Q

χ
cos θ.

Thus, the solutions for (A 12) and (A 13) are

ψ1 = 0, (A 14)

C1 = − Q
2χ

cos θ

r2
. (A 15)

At O(k2) the problem is

E4ψ2 = 0,

ψ2|r=1 = 0, ψ2|θ=0,π = 0,
ψ2

r2

∣∣∣∣
r→∞

= 0,

∂2ψ2

∂r2
− 2

∂ψ2

∂r

∣∣∣∣
r=1

= Ma sin θ
∂Γ2

∂θ
,


(A 16)

and for the concentration field,

∇2C2 = Q

(
u0r

∂C1

∂r
+
u0θ

r

∂C1

∂θ

)
,

C2|r→∞ = 0, Γ2 = C1s − Γ1C0s,

1

sin θ

∂

∂θ
(sin θu0θΓ2) =

χ

Q

∂C2

∂r

∣∣∣∣
r=1

.


(A 17)

The general solution for ψ2 is ψ2 = Σ∞n=0(Anr
−n+1 + Bnr

−n+3 + Cnr
n+2 + Dnr

n)C
−1/2
n

(cos θ) where C
−1/2
n (x) are the Gegenbauer polynomials (see Happel & Brenner 1962),

and application of the first two boundary conditions of (A 16) gives

ψ2 =

∞∑
n=2

An(r
−n+1 − r−n+3)C−1/2

n (c), (A 18)

where c = cos (θ). Using this solution along with the known expression for Γ2 (see
(A 17) and (A 15)) provides the following equation connecting the unknown constants
An:

QMa

2χ
sin2 θ = 2

∞∑
n=2

(2n− 1)AnC
−1/2
n (c) (A 19)

from which it follows (using the properties of the Gegenbauer polynomials) that
A2 = 1

6
QMa/χ, An = 0 otherwise. Hence,

ψ2 =
QMa

12χ

(
1

r
− r
)

sin2 θ. (A 20)

Next, with ψ0 and C1 known, the concentration C2 in ( A 17) satisfies

∇2C2 =
Q2

χ

[
cos2 θ

(
1

r4
− 1

r3

)
+ sin2 θ

(
1

2r3
− 1

3r4

)]
. (A 21)
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Seeking a solution of the form

C2(r, θ) =

∞∑
n=0

fn(r)Pn(c), (A 22)

where c = cos(θ) as before, we find that the unknown functions fn(r) satisfy

1

r2

d

dr
(r2f′0) =

Q2

6χr4
, (A 23)

1

r2

d

dr
(r2f′2)− 6

r2
f2 =

Q2

6χ

(
5

r4
− 6

r3

)
, (A 24)

1

r2

d

dr
(r2f′n)− n(n+ 1)

r2
fn = 0 for n 6= 0, 2. (A 25)

The general solutions are

f0 =
Q

12χr2
− d0

r
+ b0, (A 26)

f2 =
Q2

6χ

(
1

r
− 5

4r2

)
+
d2

r3
+ b2r

2, (A 27)

fn = bnr
n + dnr

−(n+1) for n 6= 0, 2, (A 28)

and since C2 = 0 as r → ∞, we require bn = 0 for all n. Hence the general solution
for C2 assumes the form

C2 =

∞∑
n=0

dnr
−(n+1)Pn(c) +

Q2

12χr2
+
Q2

6χ

(
1

r
− 5

4r2

)
P2(c), (A 29)

and the constants dn can be found by substitution into the surfactant concentration
boundary condition in equation (A 17). The result is

d0 = −Q
2

6χ
, d1 =

Q

2χ
, (A 30)

d2 =
Q2

12χ

(
1 +

2

χ

)
, dn = 0 for n > 3, (A 31)

which together with (A 29) determines C2.
Finally we consider the O(k3) problems

E4ψ3 = 0,

ψ3|r=1 = 0, ψ3|θ=0,π = 0,
ψ3

r2

∣∣∣∣
r→∞

= 0,

∂2ψ3

∂r2
− 2

∂ψ3

∂r

∣∣∣∣
r=1

= Ma sin θ
∂Γ3

∂θ
+ Γ1

(
∂2ψ2

∂r2
− 2

∂ψ2

∂r

)
,


(A 32)
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and

∇2C3 = Q

(
u0r

∂C2

∂r
+
u0θ

r

∂C2

∂θ

)
,

C3 = 0 as r →∞,
Γ3 = C2s − Γ1C1s − C0sΓ2,

1

sin θ

∂

∂θ
[sin θ(u0θΓ3 + u2θΓ1)] =

χ

Q

∂C3

∂r

∣∣∣∣
r=1

.


(A 33)

The solution for ψ3 has the same form as that for ψ2. Writing ψ3 = Σ∞n=2Bn(r
−n+1−

r−n+3)C
−1/2
n (c), the coefficients Bn are determined by substitution into the last boundary

condition of (A 32) and use of the solutions already found for Γ1, Γ2, C1 and C2 (note
that these determine Γ3 which enters into the boundary conditions). The solution,
then, is found to be

ψ3 = −QMa
3χ

(
1

r
− r
)
C
−1/2
2 (c)− Q2Ma

40χ

(
1 +

4

χ

)(
1

r2
− 1

)
C
−1/2
3 (c), (A 34)

with c = cos (θ) as before. Our interest is in computing the drag up to and including
O(k3), so the solution for C3 is not required.

Letting the drag on the bubble be FD , the limit considered here implies the expansion

FD = D0 + kD1 + k2D2 + k3D3 + · · · . (A 35)

The total drag on the bubble is found by integration of the forces acting on the
interface and since the flow is axisymmetric, the drag is the magnitude of the total
force acting along the axis of symmetry and opposing the motion. The drag is (see
Happel & Brenner 1962) (in what follows P is the pressure at the bubble surface)

FD =

∫ π

0

(
sin2 θ

∂P

∂θ
− 2 sin θ

∂2ψ

∂r2

)
dθ

=

∫ π

0

(
sin θ

∂3ψ

∂r3
− 6 sin θ

∂ψ

∂r
− 2Ma

sin2 θ

1− Γ
∂Γ

∂θ

)
dθ. (A 36)

Substitution of the solutions ψ0, ψ1, ψ2, ψ3, Γ2 and Γ3 given above determines the
coefficients in the expansion (A 35) for the drag,

D0 = −4, D1 = 0, D2 = −QMa
2χ

∫ π

0

sin3 θdθ, (A 37)

D3 =
2QMa

χ

∫ π

0

C
−1/2
2 (c) sin θdθ +

4Q2Ma

5χ

(
1 +

4

χ

)∫ π

0

C
−1/2
3 (c) sin θdθ. (A 38)

Using the result

∫ 1

−1

C−1/2
n (cos θ)dx =


2 if n = 0,
2
3

if n = 2,

0 otherwise,

 (A 39)

gives the asymptotic result (2.19) used in § 2.2.
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